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1. Introduction

Game theory studies the rational behavior of
decision-makers (called players in the following).
A crucial notion is the concept of Nash equili-
brium. A Nash equilibrium is an allocation of stra-
tegies such that no player can benefit from unilate-
ral deviation. Although any finite game has at least
one Nash equilibrium, it is shown in [1] that com-
puting a Nash equilibrium is a PPAD-complete 2
problem. This suggests that the computation of a
Nash equilibrium is not tractable when the num-
ber of players or of strategies is large. As an al-
ternative, the notion of mean-field games has been
introduced by Lasry and Lions in [6], which is a
game where an individual object is infinitesimal
and does not affect the global system behavior.
Here, we study mean field games with two specific
features : Each player has a finite state space (ins-
tead of a continuous one in [6]), and the dynamics
of one player depends explicitly on the behavior
of the others (unlike in most works in mean field
games [6, 3]). The general theory is developed in
[2]. In this document, we illustrate the theory with
a vaccination problem.

2. Model Description

2.1. Epidemic Model

We consider a population of N homogeneous ob-
jects that evolve in continuous time from 0 to T.
The objects can be susceptible, infected, recovered
or vaccinated. We denote by S(t), I(t), R(t) and
V(t) the proportion of the population that is, res-
pectively, susceptible, infected, recovered and vac-
cinated at time t.

The dynamics of one object is a Markov process
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that can be described as follows. An object encoun-
ters other objects with rate 3. If the initial object
was susceptible and the encounter was infected,
the first object becomes infected. An infected ob-
ject recovers at rate y. We also consider that there
is a vaccination policy b that is applied to each ob-
ject of the susceptible population. The vaccination
rate b is a function from 0 to T that takes values
in the interval [0, bymax]. Once an object is vaccina-
ted or recovered, it does not change its state. The
dynamics of an object is described in Figure 1.

FIGURE 1 - The dynamics of an object in the epide-
mic model.

We are interested in the analysis of this epidemic
model for a large number of objects. When N — oo,
the dynamics of the population converges [4] to the
following system of differential equations :

S(t)=—p-S(t)-I(t) —b(t) - S(t)
I(t)=p-S(t)-I(t) —y-I(t) 1)
R(t) =v-I(t

V(t) =b(t) - S(t)

In [5] the authors develop an approximation of this
epidemic model and characterize the solution of
the derived mean-field game. In the rest of the pa-
per, we show that the mean-field game correspon-
ding to this model is tractable and can be analyzed
rigorously.

2.2. Mean-Field Game

We focus on a particular object, that we call
Player 0. Let X(t) € {Sus, Infec, Reco, Vac} be the
state of Player O at time t. We note that the evo-
lution of X(t) depends on the infected population.
We assume that the rest of the population applies a
fixed vaccination policy b. Player 0 chooses its vac-
cination policy by, so as to minimize its expected
individual cost, which is

Cina(bo,b) =

.
J (cvbo(t)P(X(t) = Susc) + ¢1P(X(t) = Infec))dt,
0



where cy is the vaccination cost and c; is the unit
time cost of being infected.

We call the best response to b and denote by BR(b)
the set of vaccination policies that minimize the
cost of Player 0 for a given vaccination policy of
the population b :

Definition 1 (Best-Reponse)

BR(b) = arg min Cinqa(bo,b).
bo

@)

We now define the notion of a mean-field equili-
brium for this game. It is a vaccination strategy
bMTE such that when the population chooses the
vaccination policy bMFE, a selfish Player 0 would
also choose the same vaccination policy bMFE :

Definition 2 (Symmetric Mean-Field Equilibrium)
The vaccination policy bMTE is a symmetric mean-field
equilibrium if and only if

bMFE ¢ BR(DMFE),

The rationale behind this definition is when one
considers that the population is made of players
that each take self-interested decisions. As the
population is homogeneous, each object best-
response is the same as Player 0. In other words,
for a given population vaccination policy b, all
the objects of the populations choose the stra-
tegy BR(b). A mean-field equilibrium is a situation
where no object has incentive to deviate unilate-
rally from its strategy.

2.3. Centralized Control Problem

The mean-field game scenario corresponds to a
case where the decisions are selfish and decentra-
lized. The corresponding centralized control pro-
blem can also be defined naturally. For a given vac-
cination population b,the average system cost is

T

Coyslb) = | (ev b(0) S(0) + 1 1)) .

0

This cost represents the cost in the system when
the population vaccination policy is b. A global op-
timum is a vaccination policy that minimizes the
system cost

Definition 3 (Global Optimum)

bOPT

®)

€ arg min Cqys(b).
b

3. Main Results

The mean-field game we analyze here is a particu-
lar case of the model of [2]. In [2], we introduce the

mean-field games with explicit interactions, which
is a discrete state space model where the transi-
tion rates between states depend not only on the
actions taken, but also on the empirical measure
of the system. This explicit interactions between ob-
jects makes our model distinct from most work on
mean-field games.

To characterize a symmetric mean-field equili-
brium of the epidemic model, we model the best-
response of the generic object as a Continuous
Time Markov Decision Process and we show that,
for any population vaccination policy b, the best-
response strategy of the generic object is of thre-
shold type. This result yields the following propo-
sition.

Proposition 1 There exists a symmetric mean-field
equilibrium that is pure and of threshold type.

We also analyze the global optimum of the epide-
mic model.

Proposition 2 There exists a global optimum of thre-
shold type.

Unfortunately, in all but degenerated cases, the
thresholds do not coincide, so that the price of
anarchy of this model is never equal to 1. Nume-
rical simulations show that the price of anarchy is
small in general. A pricing mechanism can be used
to force the equilibrium to coincide with the global
optimum. Our numerical experiments show that
to encourage selfish individuals to vaccinate opti-
mally, vaccination should be subsidized.
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