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1. Introduction

Communication networks are becoming increasin-
gly multipath and a common challenge is to exploit
this path diversity. More precisely, the problem can
be modelled as a multi-commodity flow problem :
Given a number of concurrent source-destination
flows, the problem is to assign these flows to net-
work paths, while respecting capacity constraints.
Here, we present a novel algorithm for adaptive
routing in arbitrary network topologies, mapping
source-destination flows to paths. We claim that it
provides a viable and stable solution to adapt to
traffic conditions, and effectively avoids conges-
tion. Our algorithm is based on theoretical grounds
from game theory, while our implementation leve-
rages SDN protocols to ease deployment.
On the theoretical side, our distributed routing al-
gorithm is endowed with the following desirable
properties for efficient implementation :

— It is fully distributed without any informa-
tion sharing ;

— It is oblivious to the network topology ;
— It only uses on-line and local information ;
— There are no endless oscillations and it is

numerically stable ;
— It is robust to out-dated information and

measurement errors ;
— It does not require time synchronization

between routers ;
— and it converges fast even if the number of

flows is very large.

2. Routing Algorithm

Let us consider a routing problem in a communica-
tion network. Several flows of packets must be rou-
ted over a communication network. The topology
of the network is fixed but arbitrary.
Each flow k ∈ K is characterized by a source-
node, a destination-node and a nominal arrival

rate of packets, λk. Also, each flow is affected a
set Pk of paths in the network from its source to
its destination, made of Pk paths. A configuration
is a choice of one path per flow. The delay over
each link and each node in the network depends
on the the load on the link (node), in an unspe-
cified manner. For one flow, say k, we denote by
dk(p1, · · · , pk, · · · , pK) the end to end average delay
experienced by packets of flow k under the confi-
gutration where flow 1 uses path p1, flow 2 uses
path p2, and so forth.
The following algorithm is run by each flow k, in-
dependently. It is probabilistic and maintains two
vectors of size Pk. The probabilistic choice vector,
qk = (q1 . . . qPk

) gives at each step the probabi-
lities to choose the paths and the score vector Yk =
(Y1 . . . YPk

) that attributes a score to the paths.
The main loop of the algorithm is as follows (index
k is skipped).
At each local clock tick, a path p is chosen accor-
ding to q, and packets are sent along p. The ave-
rage delay of packets over this path is measured.
The score Yp is updated according to a discrete dy-
namics inspired from game theory and in turn, the
probability vector is modifed for the next path se-
lection. This repeats forever, or until a stable path
has been reached for all flows, i.e. q becomes a
degenerate probability vector (all coordinates are
zero but one) for all flows. The algorithm uses 3 pa-
rameters : τ is a discounting factor over past scores,
(γn)n∈N is a vanishing sequence of step sizes and
(βn)n∈N is a sequence of bounding terms control-
ling the growth rate of the scores. In the algorithm,
∧ denotes the minimum operator.

Algorithm 1: OPS : Online Path Selection for k
Initialize :
n← 0 ; q← ( 1

P
, . . . , 1

P
) ; Y← (0, 0, . . . , 0) ;

repeat
When local clock ticks for the nth time ;
n← n+ 1 ;
select new path pw.r.t. probability vector q ;
Use path p and measure its delay D ;
Update score of p :

Yp ← (
Yp − γn(D+ τYp)/qp

)
∧ βn ;

update proba. : ∀s ∈ Pk, qs ← exp(Ys)∑
` exp(Y`)

;
until end of time;

Theorem 1 (Convergence to equilibirum)
Under mild technical assumptions, for all ε > 0, there

exist τ > 0 such that the algorithm converges to an ε-
optimal configuration, in the following sense :



For each flow `, the probability vector q converges to an
almost degenerate probability : qp becomes smaller than
ε for all p ∈ P` except for one path, say p∗` , for which it
grows larger than 1− ε.
Furthermore, after convergence, no flow can reduce its
delay : ∀p ′ ∈ P`,
d`(p

∗
1, . . . , p

∗
` , . . . , p

∗
K) 6 d`(p

∗
1, . . . , p

′, . . . , p∗K).

The proof is based on a general convergence theo-
rem from game theory, proved in [1]. It is es-
sentially based on two facts. The empirical delay
D measured on packets using path p for flow f
has no bias, conditionally on the past : At step
n, E(D|Fn) = dk(p1, . . . , pK). This implies that
the scores Y form a stochastic approximation of a
continuous deterministic dynamics that converges
to Nash Equilibria in all potential games.

3. Implementation and experimental Results

Looking at our OPS algorihtm, we can note that
it is completely distributed : it requires only lo-
cal measures, local choices, and no coordination is
needed between routers. This eases implementa-
tion. The only difficulty lies in the ability to select
paths from source to destination : this is not practi-
cal in current next-hop forwarding networks. Our
implementation is based on an equivalent version
of OPS, where one gateway router makes a choice
among all possible next-hop routers for each of its
flow. Thus, the local actions of several routers bet-
ween source and destination implicitely determine
the path from source to destination.
Our implementation takes the form of an Open-
flow controller, using the Ryu library. The routing
table of each gateway router is programmed and
constantly updated by a dedicated controller. Fur-
thermore, each gateway router sends packet hea-
ders to its controller, for delay computation.
To run realistic experiments, we use Mininet [2], a
widely adopted network emulator. Mininet is used
to build a virtual network topology, thanks to the
network namespaces feature of the Linux kernel. On
this virtual topology, we can run our implementa-
tion exactly as if we had a real network at hand.
To validate our approach, we use a simple topo-
logy, with two gateway routers and three hosts.
Two hosts are simply connected to their gateway,
while the third host can be reached via two dif-
ferent paths. The topology is shown in Figure 1.
We consider two TCP flows from host 1 and host
2, both destinated to host 3. Each flow is restric-
ted by the sender to use no more than 8 Mbit/s,
to avoid saturating all links whatever the choice of
flow assignment. If both flows are forwarded over

next−hop router

next−hop router

Gateway 1

Gateway 2 20 ms, 10 Mbit/s

Host 1 20 ms, 10 Mbit/s

Host 3

Host 2

FIGURE 1 – Simple topology, where the two right-
most links have limited capacity (10 Mbit/s) and a
latency of 20 ms. Both host 1 and host 2 send a flow
to host 3.

the same rightmost link, congestion will occur, be-
cause of the limited capacity.
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FIGURE 2 – Probability over time to select the up-
per path for each flow.

Figure 2 shows our experimental results. For each
flow, the probability to use the upper path is plot-
ted over time. After an initial period of exploration,
the gateway routers converge to a stable state, in
which each path to host 3 supports a single flow.
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