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1. Introduction

In this work, we ask the following question : Given
a network graph G = (N ,L) with links of limited
communication bandwidth and nodes of limited
computation resources, what are the performance li-
mits of in-network computation throughput ? Na-
mely, what is the maximum rate with which com-
putation results can be conveyed to the destination
when computations take place in the network ?
We assume there exist two source nodes s1, s2 ∈ N
and a destination node d. Edge (m, l) ∈ E between
nodes m and l has a fixed capacity of Rml packets
per slot. A network example is given in Fig. 1.
We study a stream of queries, where each query
concerns the computation of the sum of a datum
from source 1 and a datum from source 2, while the
network is agnostic to specificities of data. Upon
arrival of each query, a corresponding packet (da-
tum) is generated at each of the two source nodes,
and both packets are given the same tag. These pa-
ckets need to be summed somewhere in the net-
work, and the result needs to be delivered to the
destination d. Time is slotted, and at each slot t
there are A(t) newly arrived queries belonging to
the same stream, random with E[A(t)] = λ.
Combination of packets corresponding to a query
may take place in one among a subset of nodes,
denoted by NC = {n1, n2, ..., nNC

} ⊆ V ; these are
referred to as the computation nodes. Node ni has
computational capacity of Cni

, measured in num-
ber of produced processed packets per slot, where
each processed packet concerns the sum of two
raw packets with the same tag when both are avai-
lable to the computation node.

The objective of this work is to characterize the
maximum rate of queries that can be accommoda-
ted by the network (referred to as the computation
capacity of the network), and provide an online al-
gorithm to achieve this capacity. We restrict our-
selves to policies that use only packet routing (i.e.
no network coding).

2. Queueing Structure

To capture all packet classes in the network we de-
fine the following queues (A calligraphic sign de-
notes a set with the tags of the corresponding pa-
ckets, normal sign denotes the cardinality of this
set) :

— Q(i,n)
k (t), i = 1, 2 : Data queue at node k contai-

ning raw packets generated at node si that have
to be computed at node n.

— X (i)
n (t), i = 1, 2 : Computation queue at node
n containing raw packets generated at node si
that have to be computed at this node.

— Q(0,n)
k (t), i = 1, 2 : Data queue at node k contai-

ning processed packets from computing node
n, that have to be delivered at the destination
node.

In addition, each computation node has queues
Yn(t) keeping the results of computations (see also
Fig. 2) and virtual queues Hn(t) tracking the com-
putation capacity budget.
Moving packets between queues corresponds to
control decisions to be taken each slot :
— The set of raw packets originated from node si,

destined to computation node n, to be transmit-
ted from nodem to node k.

— The pairs of raw packets to be combined at each
computation node n

— The set of processed packets, combined at node
n, to be transmitted from nodem to node k.

We have the following constraints : (i)The total
number of transmitted packets over a link (kl) are
limited by link capacity Rkl (ii) the number of com-
bined pairs cannot exceed the computation capa-
city or any of the individual raw packet queue
lengths, and (iii) a pair of packets can be combi-
ned only if both packets with the same tag have
already arrived at the computation node.

3. Upper Bound on the Network Computation
Capacity

We define a set C̃3 with 3NC unicast commodities,
as follows : there are three commodities for each
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FIGURE 1 – Illustration of network computations.
Shaded nodes are forwarding ones, i.e. without
computation capabilities, and white nodes have
computation capabilities. Arrows denote routing
of raw and processed data.

computation node n ∈ NC ; (1, n) delivering pa-
ckets from s1 to n, (2, n) delivering packets from
s2 to n, and (n, d) delivering combined packets at
(computation) node n to the destination. Let Λ(G)
be the feasible rate region for these commodities
on network G. We can characterize the computa-
tion capacity as follows :

Theorem 1 An upper bound on the computation capa-
city is given by the following optimization problem :

λ∗ = max
(λn)

∑
n∈NC

λn (1)

s.t. 0 ≤ λn ≤ Cn, ∀n ∈ NC (2)
(λ1, λ1, λ1, ..., λNC

, λNC
, λNC

) ∈ Λ(G) (3)

4. Algorithm

The dynamic policy we consider here is the follo-
wing :

1. Load Balancing : At each slot, choose n∗(t)
equal to

arg min
n∈NC

[
(1+ εB)Q

(0,n)
n (t) +

∑
i=1,2

Q
(i,n)
i (t)

+Hn(t)

]
where εB ∈ (0, 1) is a control parameter.
Then, all newly arrived queries are assigned to
the class that corresponds to this computation
node.

2. Routing and scheduling : Use Backpressure
over class pairs. For every link (m,k) ∈ E
choose the class pair(
i∗mk(t), n

∗
mk(t)

)
= arg max

i∈{0,1,2}n∈NC

∣∣∣Q(i,n)
m (t) −Q

(i,n)
k (t)

∣∣∣ .
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FIGURE 2 – Illustration of queueing structure for
computation node n. Numbered packets are either
raw or processed (green) useful packets, while pa-
ckets noted with “D” are dummy packets.

Then use the capacity of the link to route (any)
packets of the above class pair, from the biggest
to smallest corresponding queue.

3. Computation : At every node n ∈ NC, all
possible computations are done. If there are
more pairs than the computation capacity of
this node, then Cn pairs are selected using any
tie breaking rule.

4. Randomization with dummy packets :
F(n)(t) = 1{n=n∗(t)}A(t)

(
1+ B(n)(t)

)
packets

resulting from a computation are pushed to
queue Q(0)

n (t), where B(n)(t) are an i.i.d. Ber-
noulli random variables with mean εB. If there
are not enough processed packets available at
queue Yn, dummy packets are used.

5. Update Virtual Queues :

Hn(t+ 1) = [Hn(t) − Cn]
+ + 1{n=n∗(t)}F

(n)(t).

The main result of this work is the performance of
the online algorithm :

Theorem 2 The online policy satisfies any query rate
λ <

(
1− εB

1+εB

)
λ∗.

Theorem 2 implies that the online algorithm
achieves a computation rate arbitrarily close to the
upper bound.

2


